BharatiyaVidyaBhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester-Final Examination May 2018

Max. Marks: 100 Duration: 3 Hours Class: F.Y B.Tech(Civil and Electrical)

Name of the Course :Constitution of India

Instructions:

- Attempt any five questions out of seven
- Figures to the right indicate full marks.
- Every question carries 20 marks

Question No		$\begin{aligned} & \text { Max } \\ & \text { Mark } \end{aligned}$	Course Outcome Number	Module No.
Q. 1	Answer in brief (each question carries two marks)	20		
	i. What does Right to Education Mean.?			
	ii. What are the six freedoms under Article 19			
	iii. What is abolution of Untouchability means.?			
	iv. What is Right to freedom of religion.?			
	v. What are the Remedies available under the Fundamental Right.			
	vi. What are the Gandhian Principles in the Directive Principle of State Policy			
	vii. What are the cultural and Educational right			
	viii. What are the major different between Fundamental Rights and Fundamental Duties in the Constitution			
	ix. Which four new Directive Principles were added in the $42^{\text {nd }}$ amendment			
	x. How many time the emergencies proclaimed in India.?			
		10		
Q. 2	a) Explain the Fundamental Rights in detail.	10		
	b) Explain the Directive Principles of state policy under Constitution of India	10		
.				

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
RE- Exam(June 2018)

Max. Marks: 100
Class: F.Y.B.Tech
Semester:II

Duration: 3 hours
Program: (C/E/M)

Name of the Course : Computer Programming
Course Code : BT207

Instructions:

- Question ONE is Compulsory
- Attempt any FOUR out of the remaining SIX Questions.
- Assume suitable data wherever necessary.

Q. No.		Max. Marks	Course Outcome Number	Module No.
	A	Discuss the salient features of OOPs.	05	3
B	Draw flow chart to swap two numbers.	6		
C	Explain Global and local variables.	05	1	1
D	Discuss the different Datatypes supported by C++.	05	2	4
A.	Write a program using the concept of classes to add two complex numbers	10	3	6
B	Write a program to print the coefficients of binomial expansion where degree is entered by the user.	10	2	4
	A	Write a program to enter a number and say whether it is positive number, negative number or zero. Use switch statement.	10	1
3.	Explain the following with an example Loop which is exit controlled i.	05	1	2

	B	Explain constructor overloading with an example.	10	3	6,7
5.	A	Explain the concept of polymorphism	10	3	7
	B	Write a program to enter a string and check whether it's a palindrome or not.	10	2	5
	A	Write a program using functions to find GCD and LCM of two numbers.	10	2	4
B	Write a program to find transpose of a matrix	10	2	5	
	A	Explain the different types of operators in C++.	10	1	2
B	What are high level and low level languages? Explain the function of Assembler, Compiler and Interpreter related to program execution.	10	1	1	

Bharatiya Vidya Bhavan's

Munshi Nagar, Andheri (West), Mumbai - 400058.
End Sem Exam(May 2018)

Max. Marks: 100
Class: F.Y.B.Tech

Semester:II
Name of the Course : Computer Programming
Course Code : BT207

Instructions:

- Question ONE is Compulsory
- Attempt any FOUR out of the remaining SIX Questions.
- Assume suitable data wherever necessary.

Q. No.			Max. Marks	Course Outcome Number	Modul No.
1.	A	What will be the фutput of the following program: ```#include<lostream.h> void dec() { static int i= 10; cout<<i<<endl; i--; } void main() { dec(); dec(); dec(); }```	02	$\frac{\text { Number }}{}$	4
	B	i) Explain post \& pre increment and decrement operators. ii) Explain break statement with example.	$\begin{aligned} & \hline 04 \\ & 04 \end{aligned}$	1	$\begin{aligned} & 2 \\ & 3 \end{aligned}$
	C	i) Explain the different Types of Inheritance (Program not required). ii) Explain Runtime Polymorphism.	$\begin{aligned} & 04 \\ & 02 \end{aligned}$	3	6 7
	D	Explain any two string related functions which come in the headerfile <string.h>	04	2	5

2.	A	Write an algorithm to enter three sides of a triangle and state if the triangle is possible or not. If possible then say whether it is equilateral, isosceles or scalene triangle. Also draw the flow chart for the same.	10	1	
	B	Write a program to accept 5 names from the user and arrange them in alphabetical order.	10	2	
3.	A	Write a program (using Nested For Loop) to print following patterns: i) A B C DEF GHIJ ii)	10	2	
	B	Explain the difference between Call by Value and Call by Reference with example.	10	2	
4.	A	Write a program to accept a 5 digit number and multiply $1^{\text {st }}$ and $3^{\text {rd }}$ digit.	10	1	
	B	Explain Compile time Polymorphism with suitable example.	10	3	
5.	A	Create a class A that has one private integer data member and two public member functions. Create a class B that has two private floating point data members and some public member functions. Create the object of Class B in the main which will perform the division of the integer data by floating point data and display the result. Define all the necessary functions in both classes for the same.	10	3	
	B	Write a program for addition of two matrices.	10	2	
6.	A	Create a constructor for class time which by default initializes the time to 0 hours 0 minutes. If user supplies the time while creating the object then that needs to be assigned to the object. Write a main function to supply two timings (when objects are created). Aim of program is to add the two timings and display the result. Define all the necessary functions of the class for the same.	10	3	

	B	Write a program using while loop to enter a number and state whether it is prime or not.	10	2	3
A	In a company an employee is paid as under: If his basic salary is less than Rs. 1500 , then HRA $=10 \%$ of basic salary and DA =90\% of basic salary. If his salary is.either equal to or above Rs. 1500, then HRA = Rs. 500 and DA $=98 \%$ of basic salary. If the employee's salary is input through the keyboard write a program to find his gross salary. (gross pay = basic salary + HRA + DA)	10	1	3	
B	Write a program to display n terms of Fibonacci series using functions which accepts arguments but does not return any value.	10	2	4	

Bharatiya Vidya Bhavan's
Sardar Patel College of Engineering
(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058 .
End Semester II Re Exam
June 2018

Max. Marks: 75 marks

Class: F.Y B.TECH

Semester: II

Duration: 3.0 H
Program:
Course Code : BT-256

Name of the Course: Applied Chemistry -II
Instructions:
1 questions no 1 is compulsory
2 Attempt any three out of remaining four
3 Draw neat labeled diagrams

Question No	Question	Max. Marks	Course Outcome Number	Mod. No.
Q1				
a	A Coal sample contain following composition by weight $\mathrm{C}=90 \%$, $\mathrm{H}=2.5 \%, \mathrm{O}=2.5 \%, \mathrm{~S}=2 \%, \mathrm{~N}=3 \%$ and $\mathrm{Ash}=5 \%$ calculate gross and net calorific value	5	3	3
b	Calculate the Atom Economy for following reaction $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{Cl} \xrightarrow{-}-\cdots \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}+\mathrm{HCl}$	5	3	5
c	Calculate the Atom Economy for following reaction $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \quad+\mathrm{H}_{2} \quad \ldots-\cdots \quad \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$	5	4	5
Q2				
a	Explain 12 Principal of green chemistry. write short note on green solvents	10	4	5
b	Explain advantages of aluminum alloy over ferrous alloy	5	2	4
c	Explain alloy of aluminum with its composition properties and application	5	2	4
Q3				

a	Explain determination of carbon and hydrogen Ultimate analysis with its significance	$\mathbf{1 0}$	3	3
b	Write short note on cetane value of petrol fuel	5	3	3
c	Write short note on biodiesel synthesis	5	3	3
Q4		10	1	2
b	Explain protection of metal by cathodic and anodic current protection of metal by anodic coating	5	1	2
c	Explain differential aeration corrosion with suitable diagram	5	1	1
a5	Explain wet corrosion with suitable reaction, diagram and mechanism	10	1	1
b	Explain ideal character tics of good quality fuel	5	3	3
c	What are antiknocking agents? Explain its role petrol	3	3	

Bharatiya Vidya Bhavan's
 Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai-400058.
End Semester Exam
Re Exam June 2018

Max. Marks: 100
Class: F.Y. B. Tech. Electrical
Program: Electrical Engineering
Name of the Course: BEE II

Duration: Three Hours
Semester: II
Course Code : BT202

Instructions:

- Question No. 1 is compulsory
- Attempt any Four questions out of remaining SIX questions.
- Answer to all sub questions should be grouped together.
- Use graph paper to plot the graph.
- Figures to the right indicate full marks.

$\begin{aligned} & \mathrm{Q} . \\ & \mathrm{NO} \end{aligned}$			Max. Marks	Course Outcome Numbe:	Module Number
1.	A	What is the difference between avalanche and zener breakdown.	5	I	1
	B	Explain the CC configuration of BJT. State one application	5	1	3
	C	With suitable diagram explain the working of photo diode	5	1	1
	D	Explain the two transistor analogy of SCR	5	1	5
2	A	A full wave rectilier uses two diodes each having a forward resistance of 25Ω. The ms value of the secondary voltage fed between center tap to each secondary terminal is 48 V . The load resistance is $1 \mathrm{~K} \Omega$. Draw neat circuit diagram. Determine (i) DC output voltage (ii) DC output current (iii) Rectification efficiency. (iv) PIV of the diode	10	2	2
	B	In simple zener requlator circuit, $\mathrm{V}_{\text {supply }}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{L}}=$ $3 \mathrm{~K} \Omega$. Zener ratings are $\mathrm{V}_{Z}=10 \mathrm{~V}$ and $\mathrm{P}_{\mathrm{Zmax}}=30 \mathrm{~mW}$. Draw neat circuit diagram and calculate (i) Load Voltage (ii) Voltage drop across R s (iii) Current through zener (iv) Power dissipated across the zener.	10	2	2

Bharatiya Vidya Bhavan's
 SARDAR PATEL COLLEGE OF ENGINEERING
 (An Autonomous Institution Affiliated to University of Mumbai)

Re Examination for F.Y.BTech (Civil/Mechanical/Electrical) 2017-18

Duration: $\mathbf{3} \mathrm{Hrs}$
Total marks: 75
Class/Sem: F.Y.BTech (C/M/E) Sem-II
Subject : APPLIED PHYSICS-II
Course code: BT205

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Draw diagrams wherever necessary.
- Assume suitable data (if necessary) and state the assumption/s clearly!
- Figures to the right indicate full marks, course outcome number and module number respectively.

Good luck!
Q.

Max	CO	Mod
Mark		ule
		no.

(a) What is Hall Effect? Derive relation for Hall voltage and Hall coefficient. An N-type germanium sample has n_{D} as $10^{21} / \mathrm{m}^{3}$ and thickness 5 mm which is arranged in a Hall effect experimental setup. If $B=0.6 T, J=50 \mathrm{~A} / \mathrm{m}^{2}$, Find V_{H}.
(b) Explain Gauss' law and hence derive its integral form.

7 CO3 III
Find the field outside a uniformly charges sphere if radius R and total charge q. Comment on the result.
2
(a) Describe important plane orientations in an FCC structure and hence derive interplanar spacing ratios and planar atomic densities of the planes.
Lead has an FCC structure with an atomic radius $1.746 \mathrm{~A}^{\circ}$. Find the spacing of (i) (200) plane and (ii) (220) planes.
(b) Write a note on Langevin's theory of paramagnetism and hence derive an expression for magnetisation in paramagnetic materials.
(a) Write a short note on HCP structure explaining its unit cell properties. Zinc has an HCP structure. Height of the unit cell is 0.494 nm . Atomic weight of zinc is 65.37 . Calculate density of zinc.
(b) Derive an expression for potential in terms of electrostatic field.
$8 \quad \mathrm{CO} 1 \quad \mathrm{I}$

Find the potential inside and outside a spherical shell of radius R which carries a
uniform surface charge. Set the reference point at infinity.
4
(a) Give expressions for divergence and curl of magnetic field and hence state BiotSavart's law.
(b) Write a note on Bragg's spectrometer and hence explain how it is used to find the type of crystal structure.
Calculate the smallest glancing angle at which X-ray of $1.549 \mathrm{~A}^{\circ}$ will be reflected from crystal having a spacing of $4.255 \mathrm{~A}^{\circ}$. What is the highest order of reflection that can be observed?
(a) Check which of the following functions an impossible electrostatic field is and which one is an impossible magneto static field!

$$
\begin{aligned}
& \text { a. } \bar{A}=k(x y \hat{x}+2 y z \hat{y}+3 x z \hat{z}) \\
& \text { b. } \bar{A}=k\left[y^{2} \hat{x}+\left(2 x y+z^{2}\right) \hat{y}+2 y z \hat{z}\right]
\end{aligned}
$$

Where $\hat{x}, \hat{y}, \hat{z}$ are unit vectors along the direction of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes respectively.
(b) Explain how Fermi level changes with temperature in a P-type semiconductor.

6
(a) State divergence theorem and check the divergence theorem for the following function $\overline{v_{1}}=r^{2} \hat{r}$.
(b) Discuss temperature variation of paramagnetic susceptibilities of materials. A paramagnetic salt contains 10^{25} ions $/ \mathrm{m}^{3}$ with magnetic moment of one Bohr magneton. Calculate the paramagnetic susceptibility and the magnetisation produced in a uniform magnetic field of $10^{6} \mathrm{~A} / \mathrm{m}$ when the temperature is $27^{\circ} \mathrm{C}$.
7
(a) Define, write the notation, relation and units for the following:
(i) Drift velocity (ii) Current Density (iii) Mobility

In a semiconductor, the effective mass of an electron is 0.07 m and that of a hole is 0.4 , where m is the free electron mass. Assuming that the average time for collision for holes is half that for the electrons, calculate the mobility of holes when the mobility of electrons is $0.8 \mathrm{~m}^{2} / \mathrm{V}$-s.
(b) Explain hysteresis curve in ferromagnetic materials using a suitable diagram and hence define the important terms in the curve.

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)
End Semester Examination for F.Y.BTech (Civil/Mechanical/Electrical) 2017-18

16/05/2018

Total marks: 75
Class/Sem: F.Y.BTech (C/M/E) Sem-II

Subject : APPLIED PHYSICS-II
Course code: BT205

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Draw diagrams wherever necessary.
- Assume suitable data (if necessary) and state the assumption/s clearly!
- Figures to the right indicate full marks, course outcome number and module number respectively.

Good luck!

Q.

No

1
(a) Define Fermi level in a solid. Show that Fermi level lies at the centre of the forbidden gap for an intrinsic semiconductor.
Find the probability of an electron being thermally excited to conduction band in intrinsic Silicon at $27^{\circ} \mathrm{C}$. Given that the band gap is 1.12 eV .
(b) Explain Gauss' law. State its integral form and hence derive the differential form. Suppose the electric field in some region is found to be $\bar{E}=k r^{3} \hat{r}$, in spherical coordinates (k is some constant). Find the charge density ρ.
(a) Lattice constant of aluminimum is $4.05 \mathrm{~A}^{\circ}$.
a. How many unit cells are there in an Al-foil 0.1 nm thick and side 20 cm square?
b. If foil weighs 10 gm , how many atoms are present?

Draw the following: $(\overline{3} 0 \overline{2})$ and its direction.
(b) Define the following: (i) Susceptibility and (ii) Magnetisation and hence give the $\quad 2 \quad \mathrm{CO}$
relation for both.

If an iron ring of relative permeability 900 and diameter 40 cm is wound by a wire 5 of 600 turns and there is an air gap of 5 mm wide in the ring, calculate the current required to send flux of $1.5 \times 10^{-4} \mathrm{~Wb}$ through air gap if area of cross section of the ring is $5.8 \mathrm{~cm}^{2}$.

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Re-Examination
June 2018 (SET A)
Max. Marks: 100
Class: F.Y.B.Tech(C/M)

Duration: 3HR
Semester:II

Program: FIRST YEAR ENGINEERING
Name of the Course:
Engineering Graphics-II
Course Code : BT203

Exam Seat No	
Reg.NO.	
Machine NO.	
Sign of Invigilator	

Instructions:

1. All Questions are compulsory.
2. Draw neat diagrams.
3. Assume suitable data if necessary and clearly indicate the same.
4. Use only First angle projection method.

Question No	Draw the following orthographic projection view of figure 1\}FRONT VlEW 2\} TOP VIEW 3\} RHSV	Max imu m Mar ks	CO NO	Module No.
Q1	20	1,4	2	

Draw the following views by the first angle metho
1] A front view along the direction of an arrow X .
2] A sectional top view on section plane $A-B$
3]LHSV
Q2.

Q3	Given two views of an object. Draw its isometric view with O as origin.	20	2,4	5
Q4	Show the front view and L.H.S.V of an object. Draw the Following views. 1]sectional front view across section plane A-A. 2] sectional L.H.S.V across section plane B-B 3] missing TV showing all details.	20	3,4	6
Q5	Draw the following with suitable dimension a] Hexagonal Headed Bolt b]Slotted Cylindrical Headed Screw . c] Plain Stud d] Square Nut	20	4	7

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Re-Examination
June 2018 (SET B)
Max. Marks: 100
Class: F.Y.B.Tech(C/M)
Duration: 3HR
Semester. II
Program: FIRST YEAR ENGINEERING
Name of the Course:
Engineering Graphics-II
Course Code : BT203

Exam Seat No	
Reg.NO.	
Machine NO.	
Sign of Invigilator	

Instructions:

1. All Questions are compulsory
2. Draw neat diagrams.
3. Assume suitable data if necessary and clearly indicate the same.
4. Use only First angle projection method.

Question No	Draw the following orthographic projection view of figure 1\}FRONT VIEW 23 TOP VIEW 3\} LHSV	Max imu m Mar ks	CO NO	Module No.
Q1	1,4	2		

Q3	Given two views of an object. Draw its isometric view.	20	2,4	4,5
Q4	Show the front view and L.H.S.V of an object. Draw the Following views. 1] sectional front view across section plane A-A. 2] sectional L.H.S.V across section plane B-B 3] missing TV showing all details. LHSV	20	3,4	6
Q5	Draw the following with suitable dimension a] Square Headed Bolt B] Slotted Cup Headed Screw . c] Collar Stud d] Hexagonal Nut	20	4	7

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai-400058.
End Semester Re-Examination
June 2018 (SET B)
Max. Marks: 100
Class: F.Y.B.Tech(C/M)
Duration: 3HR
Semester: II
Program: FIRST YEAR ENGINEERING
Name of the Course:
Engineering Graphics-II
Course Code : BT203

Exam Seat No	
Reg.NO.	
Machine NO.	
Sign of Invigilator	

Instructions:

1. All Questions are compulsory.
2. Draw neat diagrams.
3. Assume suitable data if necessary and clearly indicate the same.
4. Use only First angle projection method.

Question No		Max imu m Mar ks	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{NO} \end{aligned}$	Module No.
Q1	Draw the following orthographic projection view of figure 1\}FRONT VIEW 2$\}$ TOP VIEW 3$\}$ LHSV	20	1,4	2

Q3	Given two views of an object. Draw its isometric view.	20	2,4	4,5
Q4	Show the front view and L.H.S.V of an object. Draw the Following views.1]sectional front view across section plane A-A. 2] sectional L.H.S.V across section plane B-B 3] missing TV showing all details.	20	3,4	6
Q5	Draw the following with suitable dimension a] Square Headed Bolt B] Slotted Cup Headed Screw . c] Collar Stud d] Hexagonal Nut	20	4	7

Bharatiya Vidya Bhavan's
Sardar Patel College of Engineering
(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Exam
May 2018 (SET A)
Max. Marks: 100
Class: F.Y.B.Tech(Mechanical)
Duration: 3HR
Semester:II
Program: MECHANICAL ENGINEERING
Name of the Course:
Engineering Graphics-II
Course Code : BT203

Exam Seat No	
Reg.NO.	
Machine NO.	
Sign of Invigilator	

Instructions:

1. All Questions are compulsory.
2. Draw neat diagrams.
3. Assume suitable data if necessary and clearly indicate the same.
4. Use only First angle projection method.

Question No		Max imu m Mar ks	$\begin{array}{\|l\|} \hline \mathrm{CO} \\ \mathrm{NO} \end{array}$	Module No.
Q1	Draw the following orthographic projection view of figure 1\}FRONT VIEW 2) TOP VIEW 3 \} RHSV	20	1,4	2

Draw the following views by the first angle method of projection 1]sectional elevation along the direction of an arrow X and the section along A-A 2] Top view 3]LHSV

Q3 | Shows two view of an object. Draw its isometric view with O as |
| :--- |
| origin. |
| Q4 |

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Automomous linstitute)
Munshi Nagar, Andheri (West), Mumbai 400058.
End Semester lixam
May $2018(S L E J \wedge)$

Max. Marks: 100
Class: F.Y.B.Tech(Mechanical)
Program: MECHANIC^AL ENGINEERING
Name of the Course:
Engineering Graphics-II
Course Code : BT203

Exam Seat No
Reg.NO.
Machine NO.
Sign of Invigilator

Instructions:

1. All Questions atre compulsory.
2. Draw neat diagrams.
3. Assume suitable data if necessary and clearly indicate the same.
4. Use only First angle projection method.

Question No		Max imu m Mar ks	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{NO} \end{aligned}$	Modul No.
Q1	Draw the following orthographic projection view of figure 1\}FRONT VIEW 2\} TOP VIEW 3\} RHSV	20	1,4	2

Q3	Shows two view of an object. Draw its isometric vicw with () as
origin.	20

"Bharaliya Vidya Bhavan's
Sardar Patèl College of Engineering
(A Govermment Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai-400058.
End Semester Exam
May 2018 (SET B)
Max. Marks:100
Class: F.Y.B.Tech(Mechanical)
Duration: 3HR
Semester: II
Program: MECHANICAL ENGINEERING
Name of the Course:
Engineering Graphics-II
Course Code : BT203

Exam Scat No Reg.NO.	
Machine NO.	
Sign of lnvigilator	

Instructions:

1. All Questions are compulsory.
2. Draw neat diagrams.
3. Assume suitable data if necessary and clearly indicate the same.
4. Use only First angle projection method.

Question No		Max imu m Mar ks	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{NO} \end{aligned}$	Modul No.
Q1	Draw the following orthographic projection view of figure 1 \}FRONT VIEW 2$\}$ TOP VIEW 3\} LHSV	20	1,4	2

Q 3	Shows two view of an object. Draw its isometric view. S.V.	20	2,4	4,5
Q4	Show the front view and L.II.S.V of an object. Draw the Following views.1]sectional front view across section plane A-A. 2] sectional L.H.S.V across section plane B-B 3] missing TV showing all details.	20	3,4	6
Q5	Draw the following with suitable dimension a] Square Headed Bolt B] Slotted Cup Headed Screw . c] Collar Stud d] Hexagonal Nut	20	4	7

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
 Munshi Nagar, Andheri (West), Mumbai - 400058.

Re-Exam
June 2018

Max. Marks: 100
Class: F.Y. B.Tech (Electrical)
Name of the Course: Engg. Graphics - II
See 16

Semester: II

Duration: 3 Hrs
Program: B. Tech Electrical
Course Code : BTM203

Instructions:

Exam Seat No	
Reg. NO.	
Machine NO.	
Sign of Invigilator	

1. All questions are compulsory.
2. Assume suitable data if necessary.

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

$\operatorname{py} 2 / 3$

Munshi Nagar, Andheri (West), Mumbai - 400058.

Figure 3

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

Max. Marks: 100
Class: F.Y. B.Tech (Electrical)
Name of the Course: Engr. Graphics - II

Duration: 3 Hrs
Program: B.Tech Electrical Course Code : BTM203

Instructions:

Exam Seat No	
Reg. NO.	
Machine NO.	
Sign of Invigilator	

1. All questions are compulsory.
2. Assume suitable data if necessary.

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

Figure 1

Figure 2
, origin.

Figure 3

Figure 4

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
June 2018
Re-Examination
Maximum Marks: 100Duration: 3 hours
Class: F.Y.B.Tech
Scmester: II
Name of the Course: Engineering Mathematics II
Program:C/M/E
Course Code : BT201

Instructions:

- Question Number 1 is compulsory.
- Attempt any FOUR questions out of remaining SIX questions.
- Answers to all sub questions should be grouped together.

Q		Mark	Co	${ }^{\text {Mod }}$
1(a)	Find the length of the arc of the parabola $y^{2}=8 x$ cut off by the latus-rectum.	5	3	4
(b)	Evaluate $\iint_{S} \sqrt{x y-y^{2}} d x$ dy where S is the triangle with vertices $(0,0),(10,1),(1,1)$.	5	4	5
(c)	Find general solution of $\frac{d y}{d t}-y \tan t=1$	5	1	1
(d)	Prove that $\frac{x^{3 / 2}}{\sqrt{3-x}} d x \int_{0}^{1} \frac{1}{\sqrt{1-x^{1 / 4}}} \mathrm{dx}=\frac{432 \pi}{35}$	5	3	3
2 (a)	Change the order and evaluate $\int_{0}^{3}\left\{\begin{array}{c}\sqrt{4-y} \\ \int_{1}(x+y) d x\end{array}\right\} d y$	6	4	5
(b)	Evaluate $\int_{0}^{1} \frac{1}{\sqrt{x \log \left(\frac{1}{x}\right)}} d x$	6	3	3
(c)	Find the area of the cardiod $\mathrm{r}=\mathrm{a}(1+\cos \theta)$	8	4	7
3 (a)	Find by double integration the mass of a thin plate bounded by y^{2} $=x$ and $y^{2}=x^{3}$ if the surface density $\rho(x, y)$ at a pint (x, y) is proportional to the square of the distance of the point from the	6	4	7

	origin.			
(b)	Evaluate $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x$	6	3	3
(c)	Solve $\left(x^{3} D^{3}+2 x D-2\right) y=x^{2} \log x+3 x$	8	2	2
4 (a)	Find the length of the loop of the curve $9 \mathrm{y}^{2}=(\mathrm{x}+7)(\mathrm{x}+4)^{2}$	6	3	4
(b)	Solve $\frac{\mathrm{di}}{\mathrm{dt}}+\frac{\mathrm{Ri}}{\mathrm{L}}=\frac{\mathrm{E}}{\mathrm{L}}$ in which the circuit has initial current i_{0}. at time $t=0$ and $\operatorname{emf} E=E_{0} e^{-k t}$	6	1	3
(c)	Solve $\frac{d^{2} y}{d x^{2}}+4 y=x \sin ^{2} x$	8	2	2
5 (a)	Evaluate $\int_{0}^{1} \frac{1}{\sqrt{x \log \left(\frac{1}{x}\right)}} d x$	6	3	3
(b)	Solve $\left(\frac{\log (\log y)}{x}+\frac{2}{3} x y^{3}\right) d x+\left(\frac{\log x}{y \log y}+x^{2} y^{2}\right) d y=0$	6	1	1
(c)	Evaluate $\int_{0}^{2} \int_{0}^{x} \int_{0}^{2 x+2 y} e^{x+y+z} d x d y d z$	8	4	6
6(a)	By changing into polar coordinates \& evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d x d y$	6	4	5
(b)	Solve $\left(D^{2}+3 D-2\right) y=e^{-x}$	6	2	2
(c)	Find the volume bounded by the coordinate planes and the plane $x+y+z=1 / 6$	8	4	7
7(a)	Solve ($\left.D^{2}-2 D+4\right) y=e^{x} \cos ^{2} x$	6	2	2
(b)	Change order of integration $\int_{-2}^{3}\left\{\int_{y^{2}-6}^{y} \phi(x, y) d x\right\} d y$	6		
(c)	Prove that $\int_{0}^{a} \frac{1}{\left(a^{n}-x^{n}\right)^{1 / n}} d x=\frac{\pi}{n} \operatorname{cosec} c\left(\frac{\pi}{n}\right)$	8	3	3

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Exam
May 2018 (SET B)

Max. Marks: 100
Class: F.Y.B.Tech(Civil)
Program: CIVIL ENGINEERING
Name of the Course:
Engineering Graphics-II
Course Code : BT203

Duration: 3HR
Semester: II

Exam Seat No	
Reg.NO.	
Machine NO.	
Sign of Invigilator	

Instructions:

1. All Questions are compulsory.
2. Draw neat diagrams.
3. Assume suitable data if necessary and clearly indicate the same.
4. Use only First angle projection method.
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Question } \\ \mathrm{No}\end{array} & & \begin{array}{l}\text { Max } \\ \text { imu } \\ \mathrm{m} \\ \mathrm{Mar} \\ \mathrm{ks}\end{array} & \begin{array}{l}\text { CO } \\ \text { NO }\end{array} & \begin{array}{l}\text { Module } \\ \text { No. }\end{array} \\ \hline \text { Q1 } \\ \text { 1\}FRONT VIEW 2\} TOP VIEW 3\} LHSV }\end{array}\right]$

Draw the following views by the first angle method of projection 1] A front view along the direction of an arrow X.
2] A sectional LHSV on section plane A-A
3]Top view

Q2.

Q3	Shows two view of an object. Draw its isometric view.	20	2,4	4,5
Q4	Show the front view and L.H.S.V of an object. Draw the Following views.1] sectional front view across section plane AA. 2] sectional L.H.S.V across section plane B-B 3] Missing TV showing all details.	20	3,4	6
Q5	Draw the following with suitable dimension a] Square Headed Bolt B] Slotted Counter Sunk Screw. c] Square Neck Stud d] Hexagonal Nut	20	4	7

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

Max. Marks: 100
Duration: Zhrs
Class: FY B.Tech
Q.P. Code: BT 204

Course Code: BT 204
Sem- II

Name of the course: Engineering Mechanics-II

Instructions:

1) Attempt any FIVE questions out of SEVEN Questions.
2) Answers to all sub questions should be grouped together.
3) Assume suitable data necessary and state clearly.

Questi on No		Maximum Marks	Course Outcome Number	Module Number
1 a)	Find the centroid of the area as shown in figure below	08	1	1
b)	Find the moment of inertia shown in figure above about X and Y axes	12	1	2
2a)	A projectile is fired with an initial velocity of $240 \mathrm{~m} / \mathrm{s}$ at a target B located 600 m above the gun A and at a horizontal distance of 3.6 kms . Neglecting air resistance determine the value of firing angle.	10	2	3
b)	A particle, starting from rest in a straight line,whose acceleration is given by equation : $a=15-0.006 \mathrm{~s}^{2}$ where \mathbf{a} is in $\mathrm{m} / \mathrm{s} 2$ and s is in metres. Determine 1) Velocity of the particle, when it has travelled 50 metres 2) Distance travelled by the particle before coming to rest.	10	2	3

$3 \mathrm{a})$	Two trains A and B leave the same station on parallel tracks. The train A starts with a uniform acceleration $2.0 \mathrm{~m} / \mathrm{s} 2$ and attains a speed of 45 kmph which remains constant. The train B leaves 1 minute later, with a uniform acceleration 0.4 $\mathrm{m} / \mathrm{s} 2$ to attain a maximum speed of 72 kmph . When will train B overtake A.	08	2	3
b)	A body ,moving with simple harmonic motion ,has an amplitude of 1 metre and the period of complete oscillation is 2 seconds. What will be the velocity and acceleration of the body after 0.4 second from extreme position.	06	2	3
c)	A stone is thrown vertically up from the top of tower with a certain initial velocity. It reaches ground in 5.64 seconds. A second stone, thrown down from the same tower with the same initial velocity reaches ground in 3.6 seconds.Determine the height of tower and initial velocity of stones.	06	2	3
4a)	A body of 10 kg mass moving towards right with a speed of $8 \mathrm{~m} / \mathrm{s}$ strikes with another body of 20 kg mass moving towards left with $25 \mathrm{~m} / \mathrm{s}$. Determine: a) Final velocity of the two bodies b) loss in kinetic energy due to impact c) Impulse acting on either body during impact. Take coeff. Of restitution between the bodies as 0.65 .	12	2	6
b)	A block of 4 kg mass slides from rest at point 1 along a frictionless inclined plane that makes an angle of 30 degrees with the horizontal. What will be the speed of block at point 2 which lies at a distance of 2.5 m from point 1 along the plane.	8	2	6
$5 \mathrm{a})$	Two bodies of weights 50 N and 10 N are connected to the two ends of a light inextensible string which passes over a smooth pulley .The weight of 10 N is placed is placed on rough inclined plane of angle of inclination 20 degrees while the weight of 50 N hangs vertically downwards. If the coefficient of friction between body and plane is 0.2 calculate acceleration of system, tension induced in the string, reaction at pulley and the distance moved by the body in 3 seconds starting from rest.	10	3	5
b)	Two bodies weighing 300 N and 450 N are hung to the ends of a rope passing over an ideal pulley. With what acceleration would the heavier body come down ?What is the tension in the rope. Obtain the solutions using D'Alembert's principle only.	10	2	5
6a)	A flywheel has an initial angular speed of $3600 \mathrm{rev} / \mathrm{min}$ in clockwise direction. When a constant turning moment was applied to the wheel, it got subjected to a uniform anticlockwise angular acceleration of $3 \mathrm{rev} / \mathrm{sec} 2$.Determine the angular velocity of the wheel after 20 seconds and total revolutions made during this period.	10	2	4
b)	A cylindrical roller 50 cm in diameter is in contact with two horizontal conveyor belts running at uniform speed of $5 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$ in - Refor tig 1 CASE A- Same directions CASE B- Opposite directions. Assuming no slip condition determine for both case A and B 1) Position of instantaneous centre of the roller 2) Linear velocity of centre C of cylind rical roller.	10	3	4

	A thin uniform bar of mass m and length is held at an angle Θ with the horizontal by means of two vertical inextensible strings one at each end as shown in figure below. Suddenly the string at right end breaks, leaving the bar to swing. What will be the angular acceleration of the bar and tension induced in the string at the left end immediately after the string breaks?		
a)			

Case A

